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Stated purpose:
“Detect failures of a classifier”
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+ Motivational statements in many publications of these four research areas (OoD-D, PUQ, MisD, SC) indicate that all
respective studies address the same goal of using confidence scoring functions (CSFs) to detect failures of
a classifier.

* In our work, we make the case that the evaluation in these fields is substantially flawed for two reasons:
1.There is a discrepancy between this stated purpose and the way methods are evaluated.

2.All these fields are currently mostly siloed meaning that there is no cross-comparison of methods,
although they address the same goal.

Pitfall 1: OoD-Detection often dewa’res
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+ In Out-of-distribution Detection, indeed, the majority of publications states failure detection in a well-defined
classification task as their purpose.

+ In the OoD-D task protocol, however, an outlier label is employed instead of the failure status of the classifier, only
aiming to determine whether cases are subject to a new-class shift or not.

« Thus, for one, a CSF is rewarded for giving high confidence to all inliers (purple lightning), including failures,
but perhaps even more concerning, the subjective outlier label is not clearly defined on the covariate shifts
(purple question marks).

* It could be argued that these more subtle shifts where the image label is preserved are the more realistic and thus
more relevant ones.
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Pitfall 2: Current evaluation metrics lead to
biased and incomplete comparison
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Task 2: Detect
remaining failures

+ The protocol in Misclassification
Detection (MisD), for instance,
employs ranking metrics like
AUROC and excludes a

Task 1: Prevent failures
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response) by design.

+ Further, such proper scoring rules conflate the task of failure
detection with the task of calibration, which is an orthogonal
interest that is not necessarily required.
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Pitfall 3: Current benchmarks ignore the
mqjor part of relevant failure sources
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- For Task 1, we see that there are many benchmarks to test the “robustness” of a classifier featuring a diverse and nuanced range
of shifts

* In contrast, for Task 2, the current landscape of benchmarks is not only inconsistent and siloed, but also there is a severe lack of testing
CSFs under different distribution shifts. This discrepancy begs the question: If simulating realistic classification failures is such a
delicate effort, why are there no analogous benchmarking efforts in the research on detecting failures?

- In our study, we fill this gap and propose a benchmark that overcomes the stated pitfalls, unifies all previously separated fields, and
allows to compare arbitratv CSFs on the entire ranae of realistic failure sources.
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The Area under the Risk-Coverage Curve
overcomes previous evaluation pitfalls

“Filter / de-select cases one-by-one from evaluation
starting with the lowest confidence score”

“Compute the Error Rate averaged
over all steps of this filtering process ”
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+ To overcome the stated evaluation pitfalls we employ the Area under the Risk-Coverage Curve
(AURC). This metric has been introduced for selective classification before, but we argue it is able to
overcome the described pitfalls in all previously separated fields and unify them under their stated
purpose of failure detection.

« AURC takes into account potential effects of a CSF on the classifier, to isolate differences across
classifiers as a nuisance factor from CSF evaluation, it is crucial to ensure identical classifiers before
training.

* It can be interpreted as the error rate averaged over the process of filtering cases ranked from low
to high confidence score.
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FD-Shifts overcomes the stated pitfalls, unifies all previously separated fields, and for
the first time, compares arbitraty CSFs on the entire range of realistic failure sources.

The table shows results measured as AURC = 1000 (score range:[0, 1000], lower is better 1). The
color heatmap is normalized per column and classifier (separately for CNN and ViT), while whiter colors
depict better scores. "cor" is the average over 5 intensity levels of image corruption shifts. AURC scores
are averaged over 5 runs on all data sets with exceptions for the CNN: 10 runs on CAMELYON-17-Wilds
(due to high volatility in results) and 2 runs on BREEDS. Abbreviations: ncs: new-class shift (s for
semantic, ns for non-semantic), iid: independent and identically distributed, sub: sub-class shift, cor:
image corruptions, ¢10/100: CIFAR-10/100, ti: Tinylmagenet

B4  p.jaeger@dkfz.de

HELMHOLTZ
IMAGING

A IML

dkfz.

GERMAN

CANCER RESEARCH CENTER
IN THE HELMHOLTZ ASSOCIATION

...................................................................................................................................................................................................................................................................................................................................................................................................

1. “None of the evaluated methods from literature beats the simple Maximum
Softmax Response baseline across a realistic range of failure sources.”

2. "Prevalent OoD-D methods are only relevant in a narrow range of A .

distribution shifts.”

Great demand for
next generation of
robust CSFsl!

3. "AURC is able to resolve previous obscurities between classifier robustness
and CSF performance.”

4. "CNN beats ViT on the iWildCam benchmark, indicating interesting transfer-

learning issues.”

Deeper understanding
of uncertainty modeling
in practice required!

~

5. "Different types of uncertainty are empirically not distinguishable.”

6. "CSFs beyond Maximum Softmax Response yield well-calibrated scores.”

7. "The Maximum Softmax Response baseline is disadvantaged by numerical

errors in the standard setting.”

~

Research perspective:
Calibrated confidence
beyond
Softmax Response

Easter Egg finding: The Softmax baseline is often dlsadvqn’rqged
by numerical errors in ranking metrics like AUROC
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+ Depending on floating point precision, rounding errors

occur during the softmax operation thereby losing the
ranking information between rounded scores.

+ Especially on the ViT classiifer, these errors occur at

astounding rates leading to substantial ranking
performance drops as measured e.g. by AUROC.

+ Even at default 32-bit precision, this effect leads to

a substantial disadvantage of softmax baselines in
all ranking tasks including OoD-Detection.
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1. State a clear purpose of the confidence scoring function (CSF) and design an
evaluation protocol that reflects this purpose.

2. If the purpose is failure detection, we recommend AURC as primary metric for
method comparison.

3. Analogously to classifier robustness, CSFs need to be tested on a wide range of data
sets and distribution shifts.

4. Compare against all viable solutions addressing the same goal, even if from
seemingly separated fields.

5. Logits should be cast to 64-bit precision or temperature-scaled prior to the softmax
operation for any ranking-related tasks to avoid subpar softmax baselines.
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